Periodic homogenization and damage evolution in RVE composite material with inclusion
##plugins.themes.bootstrap3.article.main##
Abstract
This work deals with the coupling between a periodic homogenization procedure and a damage process occurring in a RVE of inclusion composite materials. We mainly seek on the one hand to determine the effective mechanical properties according to the different volume fractions and forms of inclusions for a composite with inclusions at the macroscopic level, and on the other hand to explore the rupture mechanisms that can take place at the microstructure level. To do this; the first step is to propose a periodic homogenization procedure to predict the homogenized mechanical characteristics of an inclusion composite. This homogenization procedure is applied to the theory based on finite element analysis by the Abaqus calculation code. The inclusions are modeled by a random object modeler, and the periodic homogenization method is implemented by python scripts. It is then a matter of introducing the damage into the problem of homogenization, that is to say; once the homogenized characteristics are assessed in the absence of the damage initiated by microcracks and micro cavitations, it is then possible to introduce damage models by a subroutine (Umat) in the Abaqus calculation code. The verifications carried out focused on RVE of composite materials with inclusions.
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.