Structural Health Evaluation of Arch Bridge by Field Test and Optimized BPNN Algorithm
##plugins.themes.bootstrap3.article.main##
Abstract
Arch bridges play an important role in rural roads in China. Due to insufficient funds and a lack of management techniques, many rural arch bridges are in a state of disrepair, unable to meet the increasing transportation needs. Thus, it is of great significance to develop a set of rapid and economic damage identification procedures for the management and maintenance of old arch bridges. Sanliushui Bridge, located in Chenggu County, Hanzhong, is selected as a model case. Field tests and numerical simulations were carried out to identify the damage states of Sanliushui Bridge. The sum square of wavelet packet energy change rate, a damage identification index based on wavelet packet analysis method was implemented to process the measured data of the load test and the simulated data of the numerical calculation model with assumed damage. BPNN, GA-BPNN, PSO-BPNN and test data analysis are adopted to compare the measured data with the simulated data to quantitatively identify the damage degree of the selected bridge. By comparing the results of the two methods mentioned above, it is found that the proposed damage identification approach realized a precise damage identification of the selected arch bridges.
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.