Effect of parent concrete strength on recycled concrete performance
##plugins.themes.bootstrap3.article.main##
Abstract
The reuse of concrete waste as a secondary aggregate could be an efficient solution for sustainable development and long-term environmental protection. However, the variable quality of waste concrete, especially with various compressive strengths, can have a negative effect on the final compressive strength of recycled concrete. In this approach, the major goal of this research is to study the effect of parent concrete qualities on the performance of recycled concrete. To accomplish this task, three grades of different compressive strengths (10 to 15) MPa, (20 to 25) MPa, and (30 to 40) MPa have been analyzed in an experimental test program, in which an unknown compressive strength is introduced as well. The experimental mix use 40% of secondary aggregates (both course and fine) and 60% of natural aggregates. This led to the decreasing of the compressive strength of the test concrete between 14% and 23.7% compared to the normal concrete. This loss was improved by adding an amount of cement equivalent to 4% of the weight of the recycled aggregate used. The achieved results prove that the strength properties of the parent concrete have a limited effect on the compressive strength of the recycled concrete. Additionally, low compressive strength parent concrete, when crushed, generates a high amount of fine aggregate and large percentage of recycled coarse aggregates with less attached mortar, and presents the same compressive strength as an excellent parent concrete.
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.