Effect of reinforcement type on structural behavior of RC beams containing recycled aggregate
##plugins.themes.bootstrap3.article.main##
Abstract
Concrete containing wastes from the demolition of old deteriorated buildings are produced enormously. Concrete is a brittle matrix that is usually reinforced by ductile reinforcement such as steel bars. However, due to the susceptibility of steel to corrosion, fiber-reinforced polymers (FRP) bars are used as an alternative reinforcement. The main drawback of FRP bars is their brittleness. These two types of reinforcements, i.e. steel and glass FRP (GFRP) bars, have been used in the present work. The flexural behavior of twelve RC beams reinforced with different ratios of GFRP or steel areas containing recycled aggregate has been experimentally studied and compared with beams without recycled aggregate. The present results show that beams reinforced with GFRP and containing recycled aggregate exhibit a lower load-carrying capacity, lower first crack, and higher deflection than all beams. All GFRP RC beams exhibited brittle failure, i.e., concrete crushing in the compression zone, except one beam, with 2f16 bars and concrete without recycled aggregate, which showed catastrophic failure, i.e., the rupture in GFRP bars. However, the ductile failure mode is observed for all beams reinforced with steel bars, i.e., yielding in steel bars followed by concrete crushing
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.