Influence of Pr6O11 addition on structural and magnetic properties of mechanically alloyed Fe65Co35 nanoparticles
##plugins.themes.bootstrap3.article.main##
Abstract
This work focuses on the synthesize of nanostructured (Fe65Co35)100-x (Pr6O11)x (x = 0, 5) powders using high energy ball milling. The influence of Pr6O11 on structural, morphological and magnetic properties of Fe65Co35 nanoparticles were carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) with a dispersive energy analyzer (EDS), vibratory sample magnetometer (VSM) and differential scanning calorimetry (DSC). Results show that the praseodymium oxide addition increased the decrement rate of the crystallite size with milling time of about 27 % and decreased the increment rate of the internal micro-strain of 50 %. Moreover, because of its high grain fragmentation tendency, Pr6O11 increases the hardness and brittleness of Fe-Co powders. Moreover, it minimized the cold welding between Fe-Co ductile particles leading to a significant decrease in the average particle size (~1µm). The magnetic measurements conducted at room temperature show that the saturation magnetisation (Ms) and the coercivity (Hc) increased with milling time in both compositions. A low Ms and high Hc values were detected in (Fe65Co35)95 (Pr6O11)5 nanoparticles. The results demonstrated a soft ferromagnetic nature in all of the synthesized nanoparticles with Ms in the range 207 – 216 emu/g and Hc is found to be 113 Oe.
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.