Experimental and computational study on dynamic analysis of cracked simply supported structures under moving mass
##plugins.themes.bootstrap3.article.main##
Abstract
In this study, the influences of crack parameters like crack location from the left end, crack height, number of cracks and the magnitude of mass and the velocity of the transit load on the vertical displacements of the cracked simply supported beams subjected to transit mass are investigated. The transverse open cracks with numerous damage scenerios are considered for the mathematical modelling of the system. The governing equations of motion for the system have been obtained and the equations have been solved by the help of Duhamel integral technique. The theoretical formulation has been exemplified with numerical studies. By utilizing ANSYS Workbench 2020, transient structural analysis has been carried out. The mode shapes and the frequency ratios of damaged simply supported beam have also been determined. To validate the numerical and FEM models, the experiments with damaged beams have been carried out in the laboratory. It has been proven that the results of the theoretical and FEM models are well convergent with the experimental data. The results gathered from the numerical analysis, FEA as well as experimental study have been presented with comparative graphs and tables. The outcomes of the examinations have been interpreted in the conclusions part. It has been observed that subject parameters are of considerable significance on the time dependent response of the cracked beams.
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.