Cracking Patterns of Brittle Hemispherical Domes: an Experimental Study
##plugins.themes.bootstrap3.article.main##
Abstract
Crack formation in hemispherical domes is a distinguished problem in structural mechanics. The safety of cracked domes has a long track record; the evolution of the cracking pattern received less attention. Here, we report displacement-controlled loading tests of brittle hemispherical dome specimens, including the evolution of the meridional cracking pattern. The 27 investigated specimens, 20 cm in diameter, were prepared in 3D printed molds, and their material is one of the three mixtures of gypsum and cement. We find that neither the (limited) tensile strength nor the exact value of the thickness significantly affects the statistical description of the cracking pattern, i.e., the cracking phenomenon is robust. The maximal number of the meridional cracks never exceeds seven before the fragments’ disintegration (collapse). We find that the size distribution of the fragments exhibits a lognormal distribution. The evolution is reflected in the load-displacement diagrams recorded in the test, too, as significant drops in the force are accompanied by an emergence of one or more new cracks, reflecting the brittle nature of the phenomenon. A simple, stochastic fragmentation model, in which a segment is fragmented at either in the middle or at the fourth point, fairly recovers the observed size distribution.
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.