The investigation of additive manufacturing and moldable materials to produce railway ballast grain analogs
##plugins.themes.bootstrap3.article.main##
Abstract
The size and shape of individual grains, play an important role in the mechanical behavior of granular materials such as the strength and stability of railway ballast. The aim of this research is to study materials from which uniform, reproducible grains with irregular convex geometry can be created by molding and additive manufacturing technologies in order to create reproducible artificial assemblies that can be used in experiments. Packings with determined grain shape results more controlled investigations contrarily to using natural grains with random geometry. Specimens were made from railway ballast materials, materials used in the construction industry, additively manufactured and molded polymers, and certain low-strength materials. Uniaxial compression and bending tests were conducted on these specimens. The mechanical properties of typical railway ballast materials (basalt and andesite) were compared with the properties of artificially produced materials. The results show that for grain reproduction the molding technology is recommended with the use of polyester-crushed stone composite and ceramic powder. Furthermore, the additive manufacturing was recommended with PolyJet or Multi Jet Fusion technology as they have the feasibility to produce grains with similar material properties to the properties of basalt and andesite.
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.