Influence of Oxidation on Fracture Toughness of Carbon-Carbon Composites for High-Temperature Applications
##plugins.themes.bootstrap3.article.main##
Abstract
Carbon-Carbon Composites (C-CC), used as composites for their remarkable qualities in the space industry as well as in many other industry sectors. C-CC has proven to be the most efficient material in extreme temperature situations. One of the best high-temperature materials with good thermal quality, such as high-temperature stability, outstanding thermal conductivity and low-temperature expansion coefficients. In aircraft, railways, trucks and even race vehicles, C-CC brake disks are in high demand. In comparison to the favorable thermal and mechanical qualities of C-CC, their great sensitivity to oxidation in an oxidizing environment at temperatures even around 400°C is a major restriction with these composites. In particular, a study of the C-CC oxidation mechanism helps to create protective measures for these composites. The present experimental study explores the influence of oxidation in static air on the fracture toughness of C-CC. At a temperature of around 400°C to 700°C in an increase of 100°C, an oxidation evaluation of the material was carried out in static air. Results show a decrease in fracture toughness to increase in the temperature. We can observe that C-CC fracture toughness is severely affected by oxidation. The variation began at 400°C from 6% and was anticipated at 700°C up to 45%.
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.