A new methodology to predict damage tolerance based on compliance via global-local analysis
##plugins.themes.bootstrap3.article.main##
Abstract
Over the years several design philosophies to fatigue developed in order to combine structural safety and economy to manufacturing and operating aircraft process. The safe-life approach, which consists of designing and manufacturing a safe aeronautical structure throughout its useful life, results in factors that oversize the structural elements, preventing the possibility of failure and evidently leading to high design costs. On the other hand, the approach based on the damage tolerance concept, in which it is assumed that the structure, even whether damaged, is able to withstand the actions for which it was designed until the detection of a crack due to fatigue or other defects during its operation. Here, we propose a new methodology to the damage tolerance problem in which two-dimensional global-local analysis at different levels of external requests will be made by means of compliance, aimed at finding a relationship between fatigue life and the Paris constant. Moreover, the BemCracker2D program for simulating two-dimensional crack growth is used. This methodology has been proved to be an efficient and applied alternative in the damage tolerance analysis.
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.