Mechanical performance of intelligent asphalt mixture utilizing rejuvenator encapsulated method
##plugins.themes.bootstrap3.article.main##
Abstract
In this study, in order to evaluate the effects of heavy vacuum slops (H.V.S) as rejuvenator and nano-Zycosil as an anti-stripping agent on used encapsulation method and mechanical performance of asphalt mixture samples, scanning electron microscopy (SEM), computerized tomography (CT) scan and thermal gravimetric (TG) analyses and also, indirect tensile strength (ITS) and indirect tensile fatigue (ITF) tests were performed. First, an encapsulation procedure to prepare different specimens including modified and unmodified samples with nano-Zycosil was done. In the following, morphology of the nano-Zycosil-modified capsules and aggregates were particularly evaluated. Considering the morphology evaluation and TG analysis diagrams, it was found that most of the capsules resisted the mixing procedure of the asphalt mixture. So, the encapsulation procedure used in this study was a successful technique. In addition, modification with nano-Zycosil as an anti-stripping agent significantly improved the adhesion strength in the matrix of capsules-aggregates-asphalt binder by converting the adhesion type from silanolian to siloxane. Overall, modification of capsules and main aggregates together with nano-Zycosil significantly improved moisture resistance and mechanical performance of asphalt mixture samples.
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.